Assignment 9: MTH 213, Fall 2017

Ayman Badawi

Mueez Khan
\qquad

QUESTION 1. Given string1, say $S_{1}: 010110$ and string2, say $S_{2}: 111001$
a) Find $S_{1} \wedge S_{2}$
b) Find $S_{1} \vee S_{2}$
c) Find $S_{1} \oplus S_{2}$
d) Find $\neg S_{1} \vee S_{2}$

QUESTION 2. Convince me that $S_{1} \wedge\left(S_{2} \rightarrow S_{3}\right) \equiv\left(S_{1} \wedge \neg S_{2}\right) \vee\left(S_{1} \wedge S_{3}\right)$
QUESTION 3. Given a sequence $\left\{b_{n}\right\}_{n=0}^{\infty}$, where $b_{0}=3, b_{1}=3$, and $b_{n}=4 b_{n-1}-4 b_{n-2}+2^{n}+1$. Find a general formula for b_{n}. Solution: We only need to take care of the linear recurrence (undetermined part), other part $2^{n}+1$ is determined. So as usual

$$
\begin{gathered}
\alpha^{n}=4 \alpha^{n-1}-4 \alpha^{n-2}(\alpha \neq 0), \text { then divide both equations by } \alpha^{n-2}, \text { we get } \\
\alpha^{2}-4 \alpha+4=0, \text { Hence } C_{b}(\alpha)=\alpha^{2}-4 \alpha+4 \\
\text { set } C_{b}(\alpha)=\alpha^{2}-4 \alpha+4=0 \text {, we get } \alpha=2 \alpha=2 \\
\text { Hence } b_{n}=c_{1}\left(2^{n}\right)+c_{2} n\left(2^{n}\right)+2^{n}+1
\end{gathered}
$$

$$
\text { now } 3=b_{0}=c_{1}+0+1+1 \text {, so } c_{1}=1 \text {. Also } 3=b_{1}=2\left(2^{1}\right)+c_{2}(1)\left(2^{1}\right)+2^{1}+1 \text {, so } c_{2}=-1
$$

$$
b_{n}=2^{n}-n\left(2^{n}\right)+2^{n}+1=2\left(2^{n}\right)-n\left(2^{n}\right)+1=2^{(n+1)}-n\left(2^{n}\right)+1
$$

QUESTION 4. Given a sequence $\left\{b_{n}\right\}_{n=0}^{\infty}$, where $b_{0}=1, b_{1}=12$, and $b_{n}=b_{n-1}+6 b_{n-2}$. Find a general formula for b_{n}.
QUESTION 5. Given a sequence $\left\{b_{n}\right\}_{n=0}^{\infty}$, where $b_{0}=1, b_{1}=12$, and $b_{n}=b_{n-1}+6 b_{n-2}+n^{2}-n+31$. Find a general formula for b_{n}.

QUESTION 6. Write down T or F
(i) If $\exists x \in R$ such that $x+4=5$, then $x^{2}+2=4$
(ii) If $\exists x \in R$ such that $x^{2}+4=5$, then $x+2=3$
(iii) If $\exists x \in N$ such that $x^{2}+4=5$, then $x+2=3$
(iv) If $\exists x<0$ such that $x^{2}+4=5$, then $x^{3}+2=1$
(v) If $\exists x \in R$ such that $x^{2}+1=-5$, then $x^{3}+2 x-e^{x}=-34$
(vi) If $\exists x \in R$ such that $x^{2}+1=-5$, then $x^{3}+\sqrt{x}+\ln (4 x)+7 x^{2}=10^{213} 4$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Assignment 9
Q1) $S_{1}: 010110 \sim s 1: 101001$
$S_{2}: 111001$
a) $S_{1} \wedge s_{2}: 010000$
b) $s_{1} V s_{2}: 111111$
c) $S_{1} \oplus S_{2}: 101111$
d) $\sim s_{1} \vee s_{2}: 111001$

Q2) $\quad S_{1} \wedge\left(S_{2} \rightarrow S_{3}\right) \equiv\left(S_{1} \wedge \sim S_{2}\right) \vee\left(S_{1} \wedge S_{3}\right)$

s_{1}	s_{2}	s_{3}	$s_{1} \wedge \sim s_{2}$	$s_{1} \wedge s_{3}$	$s_{2} \rightarrow s_{3}$	$\left(s_{1} \wedge \sim s_{2}\right) v\left(s_{1} \wedge s_{3}\right)$	$\left.s_{1} \wedge s_{2} \rightarrow s_{3}\right)$	
0	0	0	0	0	1	0	0	
0	0	1	0	0	1	0	0	
0	1	0	0	0	0	0	0	
0	1	1	0	0	1	0	0	
1	0	0	1	0	1	1	1	
1	0	1	1	1	1	1	1	
1	1	0	0	0	0	0	1	0
1	1	1	0	1	1	1		

Q3) $\left\{b_{n}\right\}_{n=0}^{\infty} \quad b_{0}=3 \quad b_{1}=3$

$$
\begin{aligned}
& n=0 \quad b_{n}=4 b_{n-1}-4 b_{n-2}+2^{n}+1 \\
& C_{b}(\alpha) \Rightarrow \frac{\alpha^{n}}{\alpha^{n-2}}=\frac{4 \alpha^{n-1}}{\alpha^{n-2}}-\frac{4 \alpha^{n-2}}{\alpha^{n-2}} \\
& \rightarrow \alpha^{2}=4 \alpha-4 \quad C_{b}(\alpha)=\alpha-4 \alpha+4 \\
& \alpha^{2}-4 \alpha+4=0 \quad \alpha=\underbrace{2 \quad \alpha=2}_{\text {same roots }}
\end{aligned}
$$

$$
\begin{aligned}
b_{n}= & C_{1}\left(2^{n}\right)+C_{2} n\left(2^{n}\right)+2^{n}+1 \\
b_{0}= & 3=C_{1}+2 \rightarrow \frac{C_{1}=1}{3} \\
b_{1}= & 3=2 C_{1}+2 C_{2}+\text { substitute } c_{1} \\
& 3=2+2 C_{2}+3 \\
& 2 C_{2}=-5+3 \\
& C_{2}=-1
\end{aligned}
$$

$$
\begin{aligned}
& b_{n}=2^{n}-n 2^{n}+2^{n}+1 \\
& b_{n}=2\left(2^{n}\right)-n 2^{n}+1 \\
& b_{n}=2^{n+1}-n 2^{n}+1
\end{aligned}
$$

Q.4)

$$
\begin{array}{ll}
\left\{b_{n}\right\}_{n=0}^{\infty} & b_{0}=1 \quad b_{1}=12 \\
b_{n}=b_{n-1}+6 b_{n-2} \\
& \frac{\alpha^{n}}{\alpha^{n-2}}=\frac{\alpha^{n-1}}{\alpha^{n-2}}+\frac{6 \alpha^{n-2}}{\alpha^{n-2}} \\
\rightarrow \alpha^{2}=\alpha+6 \\
\alpha^{2}-\alpha-6=0 \\
\alpha=3 \quad \alpha=-2
\end{array}
$$

Note... $(-2)^{\wedge} \mathrm{n}=-(2)^{\wedge} \mathrm{n}$ only if n is odd
So b_n = c_1 $(3)^{\wedge} n+c_{-} 2(-2)^{\wedge} n$
so $\mathrm{b} _0=1=\mathrm{c} _1+\mathrm{c} _2$
b_1 = $12=3 \mathrm{c} _1-2 \mathrm{c} _2$
Hence c_1 = 14/5, c_2 $=-9 / 5$
b_n $=(14 / 5)(3)^{\wedge} \mathrm{n}+(-9 / 5)(-2)^{\wedge} \mathrm{n}$

Q5) $\{b n\}_{n=0}^{\infty}$
$b_{0}=1 \quad b_{1}=12$
$b_{n}=b_{n-1}+6 b_{n-2}+n^{2}-n+31$

$$
\frac{\alpha^{n}}{\alpha^{n-2}}=\frac{\alpha^{n-1}}{\alpha^{n-2}}+\frac{6 \alpha^{n-2}}{\alpha^{n-2}}
$$

$$
\begin{array}{ll}
\alpha^{2}=\alpha+6 & \\
\alpha^{2}-\alpha-6=0 & C_{b}(\alpha)=\alpha^{2}-\alpha-6 \\
\alpha=3 & \alpha=-2
\end{array}
$$

So b_n = c_1(3) ^n $+c_{-2} 2(-2)^{\wedge} n+n^{\wedge} 2-n+31$

$$
-30=c _1+c _2
$$

b_1 = $12=3 \mathrm{c} _1-2 \mathrm{c} _2+1-1+31$ implies

$$
-19=3 c _1-2 c _2
$$

Solve (1) and (2)
Hence c_1 = -79/5, c_2 = -71/5
b_n $=(-79 / 5)(3)^{\wedge} \mathrm{n}+(-71 / 5)(-2)^{\wedge} \mathrm{n}+\mathrm{n}^{\wedge} 2-\mathrm{n}+31$
(06) i) If $\underset{\rightarrow T \in \mathbb{R} \text { such that } x+4=5 \text {, then } \underbrace{x^{2}+2=4}_{\rightarrow T(x=1)} \text { : }}{\rightarrow T}$.

$$
\text { Answer }=F
$$

ii) If $\exists x \in \mathbb{R}$ such that $x^{2}+4=5$, then $x+2=3$.
iii) If $\exists x \in N$ such that $x^{2}+4=5$, then $x+2=3$

$$
\rightarrow T \quad(x=1)
$$

$$
\text { Answer }=T
$$

iv) If $\frac{\exists x<0 \text { such that } x^{2}+4=5}{\longrightarrow T(x=-1)}$, then $\frac{x^{3}+2=1}{\longrightarrow T}$

$$
\text { Answer }=T
$$

v) If $\exists x \in \mathbb{R}$ such that $x^{2}+1=-5$, then $x^{3}+2 x-e^{x}=-34$

$$
\text { Answer }=T
$$

vi) If $\frac{\exists x \in \mathbb{R} \text { such that } x^{2}+1=-5}{\rightarrow F}$ then $x^{3}+\sqrt{x}+\ln (4 x)+7 x^{2}=10^{213} 4$

$$
A_{\text {newer }}=T
$$

